Examples in Search of Algorithms
نویسندگان
چکیده
Introduction Commutativity theorems are part of the study of polynomial identities in noncommutative rings. They are theorems which assert that, under certain conditions, the ring at hand must be commutative. The proofs of theorems of this sort in their general form require the structure theory for non-commutative rings. Instances of these theorems have a strongly computational flavor. They provide interesting test examples for algorithms which use rewrite rules and reduction theory for polynomial rings in non-commuting variables. This paper presents several examples of commutativity theorems with solutions. The solutions were obtained using a reduction process for non-commutative polynomials with integer coefficients. The reduction process blends a treatment of integer coefficients due to Buchberger with handling of non-commutative polynomials due to Mora. Some comparisons are made between automated solutions and solutions “by hand”.
منابع مشابه
A HYBRID CHARGED SYSTEM SEARCH - FIREFLY ALGORITHM FOR OPTIMIZATION OF WATER DISTRIBUTION NETWORKS
Water distribution networks are one of the important and costly infrastructures of cities and many meta-heuristic algorithms in standard or hybrid forms were used for optimizing water distribution networks. These algorithms require a large amount of computational cost. Therefore, the converging speed of algorithms toward the optimization goal is as important as the goal itself. In this paper, a...
متن کاملEFFICIENCY OF IMPROVED HARMONY SEARCH ALGORITHM FOR SOLVING ENGINEERING OPTIMIZATION PROBLEMS
Many optimization techniques have been proposed since the inception of engineering optimization in 1960s. Traditional mathematical modeling-based approaches are incompetent to solve the engineering optimization problems, as these problems have complex system that involves large number of design variables as well as equality or inequality constraints. In order to overcome the various difficultie...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملPresenting a Joint Replenishment-location Model Under all-units Quantity Discount and Solving by Genetic Algorithm and Harmony Search Algorithm
In this paper a model is proposed for distribution centers location and joint replenishment of a distribution system that is responsible for orders and product delivery to distribution centers. This distribution centers are under limitedwarehouse space and this can determine amount of requirement product by considering proposed discount.The proposed model is develop to minimize total costs cons...
متن کاملOPTIMAL SIZE AND GEOMETRY DESIGN OF TRUSS STRUCTURES UTILIZING SEVEN META-HEURISTIC ALGORITHMS: A COMPARATIVE STUDY
Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algori...
متن کاملFIXED-WEIGHT EIGENVALUE OPTIMIZATION OF TRUSS STRUCTURES BY SWARM INTELLIGENT ALGORITHMS
Meta-heuristics have already received considerable attention in various engineering optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss structures is concerned in this study. In the proposed problem formulation the fundamental eigenvalue is to be maximized for a constant structural weight. The optimum is searched using Particle Swarm Optimization, PSO and i...
متن کامل